
1

Distributed Programming (03NQVOC)
Distributed Programming I (03MQPOV)

Laboratory exercise n.1

Important preliminary note. For the network programming part of the course we use the Linux
OS that is installed in the PCs at LABINF. In that installation, “wireshark” and “tshark” are
installed and configured so that they can capture traffic on the various network interfaces even if
the program is run by a normal user (no super-user, nor root). You are invited to debug your
applications by running them locally and by using the above mentioned tools to capture the
packets sent and received by your applications on the loopback interface (“lo”). This use of the
traffic analysis tools, limited to the “lo” interface, is admitted. However, we remind you that
capturing traffic on other interfaces, where traffic not belonging to your applications is
transmitted, is not allowed. In particular, capturing authentication credentials (e.g. passwords) in
order to get unauthorized access to computers is an offense with criminal consequences. For
this reason, it is strictly forbidden.
Those who will be discovered capturing or trying to capture credentials or similar will be
immediately expelled from the lab and deferred to the disciplinary commissions of the
University, besides being subject to administrative and criminal penalty according to law.

Exercise 1.1 (test server)
In Linux environment, look at the provided test server (it will be listening to the specified port
number, and it will calculate the sum of the two numbers received as input) and compile it using
the compilation command:

gcc -Wall -DTRACE -o server_test server_test.c errlib.c sockwrap.c
Then run it using:

./server_test format port
where format is an option that specifies the data format used by the server to communicate with
the client:

● -a to represent data in ASCII format
● -x to represent data in XDR format

and port is the port number on which the server will be listening to (e.g. 1500).

Test the server by using the -a option and the telnet command as client application. Telnet
takes as input parameters the server address and the port number.

Note: to interrupt the connection inside the telnet application press CTRL + ALT GR +] then Q,
followed by RETURN.

Note 2: to simplify things it is possible to use, for example, the functions provided by sockwrap.c
(Socket, Connect, etc). They are an exact copy of the socket API functions but they also

2

automatically check the function return values in order to signal and report errors. If necessary,
it is possible to modify the code in that file to adapt it to your needs.

Note 3: IMPORTANT: if you want, you can use an integrated development environment (e.g.
Eclipse, XCode, etc.). In that case, you are strongly recommended to set the -Wall option for
compilation, so that all potential errors and warnings are notified. In any case, you are strongly
suggested to make practice with command-line compilation which is the only one that
guarantees correct functioning at the exam.

Exercise 1.2 (connection)
Write a client able to connect to a TCP server to the address and port number specified as first
and second command-line parameters, respectively. The client will then notify the user if it has
managed to perform the connection or not. Finally it will close the connection, and terminate.

Exercise 1.3 (ASCII data)
Develop a client able to connect to a TCP server like the provided test server to the address and
port number specified as first and second command-line parameters, respectively. The client
then sends two unsigned integers read from the standard input to the server and receives the
answer (sum, or error) from the server. In order to test the program, it is possible to use the
server compiled in exercise 1.1
The integers are represented locally in the client and in the server as 16-bit unsigned integers,
while they are represented using ASCII characters on the TCP connection (see below). The
server also handles the overflow case, by signalling it with a specific error (read the example
below).
The client sends to the server the two numbers by using a decimal notation in numeric ASCII
characters. Numbers must be separated by a single space and transmission must be terminated
by CR-LF. The server returns the result (a single number) by expressing it through ASCII
characters, without spaces, and terminated by CR-LF (carriage return and line feed, that is, the
two bytes that corresponds to the two hexadecimal values 0x0d 0x0a, '\r' and '\n' in C notation).
In case of error, the server returns a single error message (sequence of ASCII characters), also
terminated by CR-LF. The error message can be distinguished from the successful result
because it does not start with a digit (see examples). In your C code you can assume that the
char type uses ASCII.

Examples (every element represents a single byte sent in ASCII code):
 (client -> server) 1 2 3 4 5 3 CR LF
 (server -> client) 1 2 3 4 8 CR LF
or, in case of error:
 (server -> client) o v e r f l o w CR LF
or:
 (server -> client) i n c o r r e c t o p e r a n d s CR LF

3

Exercise 1.4 (client-server UDP base)
Write a client able to send to an UDP server (to the address and the port number specified by
first and second parameter of the command line) a datagram containing a name (max 31
characters) specified as third parameter on the command line. The client then awaits any reply
datagram from the server. The client terminates by showing the content (ASCII text) of the
received datagram or by signalling that it didn’t receive any reply from the server within a certain
timespan.
Develop an UDP server (listening to the port specified as first parameter on the command line)
that replies to any received datagram by answering with a datagram containing the same name
provided by the received packet.
Try to perform datagram exchanges between client and server with the following configurations:

● client sends a datagram to the same port the server is listening to
● client sends a datagram to a port in which the server is not listening
● client sends a datagram to an unreachable address (es. 10.0.0.1)

In the provided lab material you can find the executable version of a client and of a server that
behave as expected.
Try to connect your client with the server included in the provided lab material, and the client
included in the provided lab material with your server. If fixes are needed in your client or server,
make sure that your client and server can communicate correctly with each other after the
modifications. Finally you should have a client and a server that can communicate with each
other and that can interoperate with the client and the server provided in the lab material.

	Exercise 1.1 (test server)
	gcc -Wall -DTRACE -o server_test server_test.c errlib.c sockwrap.c
	./server_test format port

	Exercise 1.2 (connection)
	Exercise 1.3 (ASCII data)
	Exercise 1.4 (client-server UDP base)

