Distributed Programming (O3NQVOC)
Distributed Programming | (O3MQPOV)

Laboratory exercise n.2

Exercise 2.1 (perseverant UDP client)

Modify the UDP client of exercise 1.4 so that - in the case in which it does not receive any
answer from the server in 3 seconds - it re-transmits the request (up to a maximum of 5 times)
then it terminates by reporting if it has received the reply or not,

Perform the same tests of exercise 1.4

Exercise 2.2 (limiting UDP server)

Modify the UDP server of exercise 1.4 so that it replies to a client only if it does not have
performed more than three requests from the same IP address (since the server has been
activated). The server must be able to recognize the last 10 clients that have performed a
request.

Try, then, to run four times the client of exercise 1.4 against this server.

Finally, try to run against this server two clients, placed in different network nodes, alternating
between them, four times for each client.

Exercise 2.3 (iterative TCP server)
Develop a TCP server (listening to the port specified as first parameter of the command line)
accepting file transfer requests from clients and sending the requested file.
Develop a client able to connect to a TCP server (to the address and port number specified as
first and second command-line parameters, respectively), to request files, and store them
locally. File names to be requested must be provided to the client using the standard input, one
per line. Every requested file must be saved locally and the client must print to the standard
output a message about the performed file transfer, with file name and size.
The protocol for file transfer works as follows: to request a file the client sends to the server the
three ASCII characters “GET” followed by the ASCII characters of the file name (without any
space) and terminated by CR-LF (carriage return and line feed, again without spaces):
GETfilename CR LF
(the command includes a total of 5 characters plus the characters of the file name). The server
replies by sending:
+0OK CR LF
(5 characters) followed by the number of bytes (a 32-bit unsigned integer in network byte order)
and then by the bytes of the requested file.
The client can request more files by sending many GET commands. When it intends to
terminate the communication it sends:
QUIT CR LF
(6 characters) and then it closes the communication channel.
In case of error (e.g. illegal command, non-existing file) the server always replies with:



-ERR CR LF
(6 characters) and then it closes the communication channel with the client.
Try to connect your client with the server included in the provided lab material, and the client
included in the provided lab material with your server (note that the executable files are
compiled for a 64-bit Linux, so that they can run in the Labinf computers). If fixes are needed in
your client or server, make sure that your client and server can communicate correctly with each
other after the modifications. Finally you should have a client and a server that can
communicate with each other and that can interoperate with the client and the server provided
in the lab material.

While a connection is active try to activate a second client against the same server.

Try to activate on the same node a second instance of the server on the same port.

Try to connect the client to a non-reachable address.

Try to connect the client to an existing address but on a port in which the server is not listening
to.

Try to de-activate the server (by pressing ~C in its window) while a client is connected.

Exercise 2.4 (standard XDR data)

Modify the TCP client developed in the first laboratory (exercise 1.3) to send the two integer
numbers read from the standard input and receive the reply (sum) from the server by using the
XDR standard to represent data. It is not necessary to handle errors: the server always replies
with a single integer value. Use the test server compiled in the exercise 1.1 by using the -x
option.



	Exercise 2.1 (perseverant UDP client)
	Exercise 2.2 (limiting UDP server)
	Exercise 2.3 (iterative TCP server)
	Exercise 2.4 (standard XDR data)

